Synthesis and Molecular Structure of Tetranuclear Tungsten-Gallium Complexes with Bridging Dinitrogen Ligands¹

Kaoru Takagahara, Hiroshige Ishino, Youichi Ishii, and Masanobu Hidai*

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo,

Hongo, Bunkyo-ku, Tokyo 113-8656

(Received June 1, 1998; CL-980420)

The dinitrogen complex cis-[W(N₂)₂(PMe₂Ph)₄] reacted with Ga₂Cl₄ or GaX₃ (X = Cl, Br) to form tetranuclear tungsten-gallium complexes with $\mu_3-\eta^1:\eta^1:\eta^1-N_2$ ligands, trans,trans-[{WX(PMe₂Ph)₄(μ_3-N_2)}₂(GaX₂)₂] (3). The molecular structure of complex 3a (X = Cl) has been determined by X-ray diffraction study.

Since the Fe-Mo multinuclear active site of nitrogenase was revealed by X-ray analysis,2 binding and chemical transformation of molecular nitrogen at multimetallic centers have been attracting intense attention.3,4 Various types of multinuclear bridging dinitrogen complexes have been prepared up to date, which exhibit intriguing reactivities. 4b-e However, examples of heterobimetallic dinitrogen complexes are still limited in number.4d,5-8 In the course of our continuous study on syntheses and reactivities of dinitrogen complexes, we previously reported several heterobimetallic complexes with μ -N₂ ligands such as the W-Al complex $[{WCl(py)(PMe_2Ph)_3(\mu_3-N_2)}_2(AlCl_2)_2]$ (1; py pyridine),5 which demonstrated the first example of a µ3η¹:η¹:η¹-N₂ ligand, and the W-Zr complex [WCl(py)(PMe₂Ph)₃(μ -N₂)ZrCp₂Cl] (Cp = η ⁵-C₅H₅)⁶ with a μ_2 - η^1 : η^1 - N_2 ligand. We describe here the synthesis and characterization of tetranuclear W-Ga complexes with µ3η¹:η¹:η¹-N₂ ligands, which provide hitherto unknown examples of dinitrogen complexes containing gallium.

When the dinitrogen complex cis-[W(N₂)₂(PMe₂Ph)₄] (2) was allowed to react with GaCl₃ (1 equiv.) in benzene at room temperature, evolution of N₂ gas (0.92 mol per tungsten atom) was observed. Recrystallization of the crude product from toluene-hexane gave orange crystals of trans,trans-[{WCl(PMe₂Ph)₄(μ_3 -N₂)}₂(GaCl₂)₂] (3a)⁹ in 46% yield (eq 1). A similar reaction of complex 2 with

$$P = PMe_{2}Ph$$

$$CI = V = PMe$$

GaBr₃ afforded the bromo analog trans,trans- $[\{WBr(PMe_2Ph)_4(\mu_3-N_2)\}_2(GaBr_2)_2]$ THF (**3b** THF) in 41% yield. 9 Complex **3a** exhibited a strong IR absorption at 1336 cm⁻¹ attributable to the v_{NN} band. The ¹H and ³¹P{¹H} NMR spectra showed a broad Me singlet at δ 1.85 and a singlet at δ –23.6 with ¹⁸³W satellites (J_{WP} = 284 Hz), respectively, indicating the trans configuration around the tungsten centers. These spectroscopic data are in agreement with the formulation.

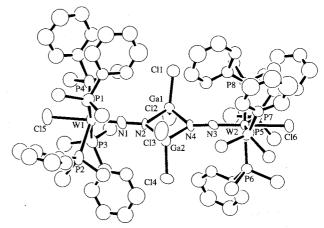


Figure 1. Molecular structure of 3a. Selected bond distances (Å) and angles (deg): W(1)-N(1), 1.77(2); W(2)-N(3), 1.79(2); Ga(1)-N(2), 1.94(2); Ga(1)-N(4), 1.93(2); Ga(2)-N(2), 1.91(2); Ga(2)-N(4), 1.92(2); N(1)-N(2), 1.32(2); N(3)-N(4), 1.31(2); W(1)-N(1)-N(2), 175(1); W(2)-N(3)-N(4), 175(1); N(2)-Ga(1)-N(4), 84.8(8); N(2)-Ga(2)-N(4), 85.8(8); Ga(1)-N(2)-Ga(2), 94.6(8); Ga(1)-N(4)-Ga(2), 94.8(9); Ga(1)-N(2)-N(1), 132(1); Ga(1)-N(4)-N(3), 128(1); Ga(2)-N(2)-N(1), 132(1); Ga(2)-N(4)-N(3), 137(1).

The molecular structure of complex 3a was unambiguously determined by X-ray diffraction study. 10 Single crystals of $3a\cdot2.5(C_4H_8O_2)$ suitable for X-ray analysis were obtained by recrystallization from dioxane/hexane. As shown in Figure 1, complex 3a has a tetranuclear structure with two $\mu_3-\eta^1:\eta^1-N_2$ ligands, each of which bridges one tungsten and two gallium atoms. Thus, the two gallium atoms and two of the four nitrogen atoms constitute a four-membered ring. The W(µ3- N_2) Ga₂(μ_3 - N_2)W core is essentially planar, and the W-N-N linkages are almost linear. Analogous tetranuclear cores with two $\mu_3-\eta^1:\eta^1:\eta^1-N_2$ ligands have so far been found in or proposed for a few complexes including complex 1, $[\{Co(PMe_3)_3(\mu_3-N_2)\}_2(AlR_2)_2]$ (R = Me, Et, CH_2^iPr), 7a $[\{Co(PMe_3)_3(\mu_3-N_2)\}_2\{MgR(OEt_2)\}_2]\ (R\ =\ Me,\ CH_2{}^{\it i}Pr,$ t Bu, Ph), 7b and $[\{W(\eta^5-C_5Me_5)Me_3(\mu_3-N_2)\}_2\{Mg(Me_2N-1)\}_2\}_2$ CH₂CH₂NMe₂)₂].^{7c} The structure of complex 3a is essentially the same as that of complex 1. However, bond distances in complex 1 could not be determined accurately due to the poor quality of the crystals. It is noteworthy that the N-N bond distances observed for complex $\bf 3a$ (1.32(2), 1.31(2) Å) are significantly longer than those reported for the above-mentioned Co-Al (R = Me, 1.256(6) Å) and Co-Mg (R = tBu , 1.211(4) Å) μ_3 - η^1 : η^1 - η^1 - η^2 -complexes. The Ga-N bond distances at 1.91(2)-1.94(2) Å fall within the range of reported covalent Ga-N single bonds, but are considerably shorter than the values found for complexes with a Ga₂N₂ core such as [Cl₂Ga(μ -NHSiMe₃)]₂ (1.974(4) Å),¹¹ [Cl₂Ga(μ -NMeSiMe₃)]₂ (1.983(5)-1.985(5) Å),¹¹ [Br₂Ga(μ -NHSiMe₃)]₂ (1.99(2)-2.00(2) Å),¹² [H₂Ga(μ -NMe₂)]₂ (2.027(4) Å),¹³ and [Et₂Ga(μ -NHNPh₂)]₂ (2.042(7)-2.070(7) Å).¹⁴

On the basis of the molecular structure and spectral features, complex 3a can be described as a resonance hybrid of the canonical structures depicted in Scheme 1. Structures A and A' may be regarded as the dimer of a hypothetical singly bent diazenido(2-) $((N_2)^2)$ complex [WCl(N=NGaCl₂)(PMe₂Ph)₄], while structure B represents the hydrazido(4-) $((N_2)^4)$ complex. A significant contribution of the latter resonance structure is substantiated by the relatively long N-N and short Ga-N bond distances.

Complex 3a was also obtained by the reaction of 2 with Ga₂Cl₄ (Ga:W = 2:1) in 40% yield. Further, the reaction of the dinitrogen complex trans-[W(N₂)₂(depe)₂] (depe = Et₂PCH₂CH₂PEt₂) with Ga₂Cl₄ or GaCl₃ produced the corresponding W-Ga μ_3 - η^1 : η^1 -N₂ complex trans,trans-[{WCl(depe)₂(μ_3 -N₂)}₂(GaCl₂)₂] (4) in ca. 40% yield 15.16 Studies on the reactivities of the W-Ga μ -N₂ complexes 3 and 4 are under way.

This work was supported by a Grant-in-Aid for

Specially Promoted Research No. 09102004 from the Ministry of Education, Science, Sports, and Culture, Japan.

References and Notes

- Preparation and Properties of Molybdenum and Tungsten Dinitrogen Complexes. 59. Part 58: Y. Harada, Y. Mizobe, and M. Hidai, submitted.
- J. B. Howard and D. C. Rees, Chem. Rev., 96, 2965 (1996).
- 3 M. Hidai and Y. Mizobe, Chem. Rev., 95, 1115 (1995).
- For recent examples, see a) Y. Nishibayashi, S. Iwai, and M. Hidai, Science, 279, 540 (1998). b) M. D. Fryzuk, J. B. Love, S. J. Rettig, and V. G. Young, Science, 275, 1445 (1997). c) H. Shan, Y. Yang, A. J. James, and P. R. Sharp, Science, 275, 1460 (1997). d) M. B. O'Donoghue, N. C. Zanetti, W. M. Davis, and R. R. Schrock, J. Am. Chem. Soc., 119, 2753 (1997). e) C. E. Laplaza, M. J. A. Johnson, J. C. Peters, A. L. Odom, E. Kim, C. C. Cummins, G. N. George, and I. J. Pickering, J. Am. Chem. Soc., 118, 8623 (1996).
- T. Takahashi, T. Kodama, A. Watakabe, Y. Uchida, and M. Hidai, J. Am. Chem. Soc., 105, 1680 (1983).
- 6 Y. Mizobe, Y. Yokobayashi, H. Oshita, T. Takahashi, and M. Hidai, Organometallics, 13, 3764 (1994).
- 7 a) H.-F. Klein, K. Ellrich, and K. Ackermann, J. Chem. Soc., Chem. Commun., 1983, 888. b) H.-F. Klein, H. König, S. Koppert, K. Ellrich, and J. Riede, Organometallics, 6, 1341(1987). c) T. E. Glassman, A. H. Liu and R. R. Schrock, Inorg. Chem., 30, 4723 (1991).
- a) P. D. Cradwick, J. Chatt, R. H. Crabtree, and R. L. Richards, J. Chem. Soc., Chem. Comm., 1975, 351.
 b) R. R. Schrock, R. M. Kolodziej, A. H. Liu, W. M. Davis, and M. G. Vale, J. Am. Chem. Soc., 112, 4338 (1990).
 c) M. Mercer, J. Chem. Soc., Dalton Trans., 1997, 1637.
- 3a: ¹H NMR (C₆D₆) δ 1.85 (br s, 48H, Me), 6.98 (t, 8H, p-PMe₂Ph), 7.18 (t, 16H, m-PMe₂Ph), 7.63 (br, 16H, o-PMe₂Ph); ³¹P{¹H} NMR (C₆D₆) δ -23.6 (s, J_{WP} = 284 Hz); IR (KBr) 1336 cm⁻¹. Anal. Found: C, 41.21; H, 4.67; N, 2.94%. Calcd for C₆₄H₈₈Cl₆-Ga₂N₄P₈W₂: C, 40.87; H, 4.36; N, 2.98%.
 3b·THF: orange crystals, ¹H NMR (C₆D₆) δ 1.96 (br s, 48H, Me), 7.02 (t, 8H, p-PMe₂Ph), 7.17 (t, 16H, m-PMe₂Ph), 7.69 (br, 16H, o-PMe₂Ph); ³¹P{¹H} NMR (C₆D₆) δ -29.5 (s, J_{WP} = 284 Hz); IR (KBr) 1323 cm⁻¹. Anal. Found: C, 36.57; H, 4.57; N, 2.37%. Calcd
- for C₆₈H₉₆Br₆Ga₂N₄OP₈W₂: C, 36.79; H, 4.36; N, 2.52%.

 10 Crystallographic data for 3a 2.5(C₄H₈O₂): C₇₄H₁₀₈Cl₆Ga₂N₄O₅-P₈W₂, M = 2101.34, monoclinic, space group P₂I/c, Z = 4, a = 20.493(4), b = 22.676(5), c = 20.808(3) Å, β = 114.82(1)°, V = 8776(2) Å³, D_{calcd} = 1.509 gcm⁻³, μ(MoK_α) = 35.99 cm⁻¹, F(000) = 4208.00, R = 0.055, R_w = 0.046 for 3337 unique reflections with I>3σ(I). The W, Ga, Cl, P, and N atoms were refined with anisotropic thermal parameters, while the C and O atoms were refined isotropically. The hydrogen atoms except for those of the dioxane molecules were included in the final stage of refinement with fixed isotropic parameters.
- W. R. Nutt, J. A. Anderson, J. D. Odom, M. M. Williamson, and B. H. Rubin, *Inorg. Chem.*, 24, 159 (1985).
- W. R. Nutt, J. S. Blanton, F. O. Kroh, and J. D. Odom, *Inorg. Chem.*, 28, 2224 (1989).
- P. L. Boxter, A. J. Downs, D. W. H. Rankin, and H. E. Robertson, J. Chem. Soc., Dalton Trans., 1985, 807.
- 14 D. A. Neumayer, A. H. Cowley, A. Decken, R. A. Jones, V. Lakhotia, and J. G. Ekerdt, *Inorg. Chem.*, 34, 4698 (1995).
- 15 4: orange crystals, ¹H NMR (C_6D_6) δ 1.00 (m, 24H, Me), 1.36 (m, 24H, Me), 1.5-2.5 (m, 48H, CH₂); ³¹P{¹H} NMR (C_6D_6) δ 33.0 (s, J_{WP} = 279 Hz); IR (KBr) 1360 cm ⁻¹, Anal. Found: C, 29.93; H, 6.14; N. 3.30%. Calcd for $C_{40}H_{96}Cl_6Ga_2N_4P_8W_2$: C, 30.01; H, 6.04; N, 3.50%.
- Other dinitrogen complexes of tungsten and molybdenum such as trans-[M(N₂)₂(dppe)₂] (M = W, Mo) and trans-[W(N₂)₂-(PMePh₂)₄] failed to give similar μ -N₂ complexes including gallium.